Fault ( In Electric Power )


In an electric power system, a fault is any abnormal flow of electric current. For example, a short circuit is a fault in which current flow bypasses the normal load. An open-circuit fault occurs if a circuit is interrupted by some failure. In three-phase systems, a fault may involve one or more phases and ground, or may occur only between phases. In a "ground fault" or "earth fault", current flows into the earth. The prospective short circuit current of a fault can be calculated for power systems. In power systems, protective devices detect fault conditions and operate circuit breakers and other devices to limit the loss of service due to a failure.

In a poly-phase system, a fault may affect all phases equally which is a "symmetrical fault". If only some phases are affected, the resulting "asymmetrical fault" becomes more complicated to analyze due to the simplifying assumption of equal current magnitude in all phases being no longer applicable. The analysis of this type of fault is often simplified by using methods such as symmetrical components.


1-      Transient Fault

A transient fault is a fault that is no longer present if power is disconnected for a short time. Many faults in overhead power lines are transient in nature. At the occurrence of a fault power system protection operates to isolate area of the fault. A transient fault will then clear and the power line can be returned to service. Typical examples of transient faults include:

  • momentary tree contact
  • bird or other animal contact
  • lightning strike
  • conductor clash

In electricity transmission and distribution systems an automatic reclose function is commonly used on overhead lines to attempt to restore power in the event of a transient fault. This functionality is not as common on underground systems as faults there are typically of a persistent nature. Transient faults may still cause damage both at the site of the original fault or elsewhere in the network as fault current is generated

2-      Persistent Fault

A persistent fault does not disappear when power is disconnected. Faults in underground power cables are most often persistent due to mechanical damage to the cable, but are sometimes transient in nature due to lightning

3-      Balanced (Symmetric Fault)

A symmetric or balanced fault affects each of the three phases equally. In transmission line faults, roughly 5% are symmetric. This is in contrast to an asymmetric fault, where the three phases are not affected equally. In practice, most faults in power systems are unbalanced. With this in mind, symmetric faults can be viewed as somewhat of an abstraction; however, as asymmetric faults are difficult to analyze, analysis of asymmetric faults is built up from a thorough understanding of symmetric faults.

4-      Unbalanced (Asymmetric Fault)

An asymmetric or unbalanced fault does not affect each of the three phases equally. Common types of asymmetric faults, and their causes:

  • line-to-line
  • line-to-ground
  • double line-to-ground

  • Generator sets – In a power plant, the protective relays are intended to prevent damage to alternators or to the transformers in case of abnormal conditions of operation, due to internal failures, as well as insulating failures or regulation malfunctions. Such failures are unusual, so the protective relays have to operate very rarely. If a protective relay fails to detect a fault, the resulting damage to the alternator or to the transformer might require costly equipment repairs or replacement, as well as income loss from the inability to produce and sell energy.

  • Overload & Back-up for Distance (Overcurrent) – Overload protection requires a current transformer which simply measures the current in a circuit. There are two types of overload protection: instantaneous overcurrent and time overcurrent (TOC). Instantaneous overcurrent requires that the current exceeds a pre-determined level for the circuit breaker to operate. TOC protection operates based on a current vs time curve. Based on this curve if the measured current exceeds a given level for the preset amount of time, the circuit breaker or fuse will operate.

  • Earth fault (Ground fault in the United States) – Earth fault protection again requires current transformers and senses an imbalance in a three-phase circuit. Normally the three phase currents are in balance, i.e. roughly equal in magnitude. If one or two phases become connected to earth via a low impedance path, their magnitudes will increase dramatically, as will current imbalance. If this imbalance exceeds a pre-determined value, a circuit breaker should operate.

  • Distance (Impedance Relay) – Distance protection detects both voltage and current. A fault on a circuit will generally create a sag in the voltage level. If the ratio of voltage to current measured at the relay terminals, which equates to impedance, lands within a pre-determined level the circuit breaker will operate. This is useful for reasonable length lines, lines longer than 10 miles, because its operating characteristics are based on the line characteristics. This means that when a fault appears on the line the impedance setting in the relay is compared to the apparent impedance of the line from the relay terminals to the fault. If the relay setting is determined to be below the apparent impedance it is determined that the fault is within the zone of protection. When the transmission line length is too short, less than 10 miles, distance protection becomes more difficult to coordinate. In these instances the best choice of protection is current differential protection.

  • Back-up – The objective of protection is to remove only the affected portion of plant and nothing else. A circuit breaker or protection relay may fail to operate. In important systems, a failure of primary protection will usually result in the operation of back-up protection. Remote back-up protection will generally remove both the affected and unaffected items of plant to clear the fault. Local back-up protection will remove the affected items of the plant to clear the fault.


Our Partners